
1

VME Communication
with LBNL

ABCD Tester System

v. 3.7

Version Date,
Mo/Day/Year

Who Description

1.0 March 2000 H. Niggli Creation
2.0 10/20/2000 V. Fadeyev Updated list of VME commands;

note on TestVectors
2.1 10/24/2000 V. Fadeyev Added ADCs description
2.2 11/01/2000 V. Fadeyev Fixed TV Masking description
3.0 03/04/2001 V. Fadeyev FPGA register and ADC readout

modification, more more description
3.0 03/20/2001 A. Ciocio Review
3.1 03/13/2001 V. Fadeyev ADC table modification, additional vme

call (pd inhibit)
3.2 03/29/2001 C. Flacco Review
3.3 04/03/2001 V. Fadeyev ADC units, new VME call (hit pattern)
3.4 04/11/2001 V. Fadeyev Histo error flags, decoding description,

id note
3.5 04/16/2001 V. Fadeyev Current TV content description
3.6 05/07/2001 V. Fadeyev Added info on window comparators.
3.7 05/24/2001 V. Fadeyev Added version call info



2

Organization of this document

The information in this document is arranged as follows. First we give summary
tables of VME commands used to talk with the system. Then we describe
different functionalities of the system. At the end there is a section containing
a sample list of actions one can use to do a threshold scan and a section with
VME interface implementation details.

We will refer to the chip being tested as ABCD throughout this document, thus
skipping the version suffixes (ABCD2NT, ABCD3T etc).

The supplement information, such as ABCD chip specifications and ABCD test
specifications, is available from the CERN Chip Information page:

http://chipinfo.web.cern.ch/chipinfo/



3

VME Commands

VME Address:

Bits 31..25 = 8-bit VME board address = set by dip switches on the board
Bits 24..10 = don’t care
Bits 9..4 => Execute one of the VME commands listed in Tables 1,2,3
Bits 3..0 = don’t care

Table 1. VME Commands for Board Operation.

Bits
9..4
hex

Read/Write Description VME Data Bus

00 Read Read FPGA Status Register Bits 11..0 = ACE
Bit 12 = HISTO_1_BUSY
Bit 13 = HISTO_2_BUSY
Bit 14 = DAC_ADC_BUSY
Bit 15 = TV_BUSY
Bit 16 = BUSY (4 BUSY
bits above OR'd together)
Bit 17=TVDifferenceFound
Bits 31..18 = 0

01 Write Reset Test Vector Memory Counter to 0 X
02 Write Reset Simulation Vector Memory Cnt to 0 X
03 Write Clear Histogram Memory X
04 Read Read from Histogram Memory and

Increment Memory Pointer
Bits 15..0 = Stream B
Bits 31..16 = Stream A

05 Write Set Base Address for Histogramming and
Reset Histogram Memory Counter to
xaa000000, where “aa” stands for the
Base Address

Bits 7..0 = Base Address
Bits 31..8 = X

06 Write Send Test Vector
07 Write Write to Test Vector Memory and

Increment the Test Vector Memory
Counter

Bits 17..0 = data
Bits 31..18 = X

08 Write Write to Simuation Vector Memory and
Increment the Simulation Vector Memory
Counter

Bits 17..0 = data
Bits 31..18 = X

09 Write Reset the ReSync FIFO read pointer X
0a Write Set DAC Bits 9..0 = data

Bits 22..19 = dac address
Bits 18..16 = dac channel
other bits: X

0b Write Send Convert Signal to ADC Bits 2..0 = ADC number
0c Read Read ADC Data from last Conversion Bits 11..0 = data
0d Read Read from ReSync FIFO Bits 8..0 = data

Bits 17 = FIFO empty flag:



4

0 = empty, 1 = not empty
Bits 16..9, 31..18 = X

0e Write Start sending triggers and decode and
histogram the data

X

0f Write Set Frequency Bits 8..0 = M
Bits 10..9 = N
Bits 13..11 = T

Table 2. VME Commands used to issue control sequences to the chip or
module to be tested. For details on the sequence, consult the ABCD
specifications document.

Bits
9..4
hex

Read/Write Description VME Data Bus

10 Write Set Trigger-To-Trigger Delay Bits 15..0 = delay in cc
(25ns)
Bits 31..16 = X

11 Write Set Number of Triggers to be sent per Burst Bits 15..0 = #triggers
Bits 31..16 = X

12 Write Send Soft Reset (all chips) X
13 Write Send BC Reset (all chips) X
14 Write Write to Configuration Register Bits 21..16 = chip addr.

Bits 15..0 = config reg
data
Bits 31..22 = X

15 Write Reset FPGA-Mask Register Pointer X
16 Write Write 32 bits to FPGA-Mask Register 31..0 = mask reg data
17 Write Send FPGA-Mask Register to a chip Bits 21..16 = chip addr.

Bits 15..0 = X
Bits 31..16 = X

18 Write Load Strobe Delay Register Bits 15..0 = reg data
Bits 21..16 = chip addr.
Bits 31..22 = X

19 Write Load Threshold/Cal DAC Ampl Reg Bits 15..0 = reg data
Bits 21..16 = chip addr.
Bits 31..22 = X

1a Write Enable Data Taking Bits 21..16 = chip addr.
Bits 15..0 = X
Bits 31..16 = X

1b Write Select/Strobe Enable Bits 1: abcd select bit
Bits 0: strobe enable bit

1c Write Issue Hard Reset not implemented
1d Write Load Bias DAC Bits 15..0 = reg data

Bits 21..16 = chip addr.
Bits 31..22 = X

1e Write Load Trim DAC Bits 15..0 = reg data
Bits 21..16 = chip addr.
Bits 31..22 = X



5

1f Write Set Strobe-To-Trigger Delay Bits 7..0 = delay in cc
Bits 31..8 = X

Table 3. Additional VME Commands.

Bits
9..4
hex

Read/Write Description VME Data Bus

20 Read TV Difference location in time sequence Bits 17..0 = Data
(=0 if no difference)
Bits 31..18 = 0

21 Read TV Difference Word Bits 7..0 = difference
seen on the corresp. TV
output lines at the 1st
difference location;
(bit #N = 1 if there was
a difference on line #N;
=0 otherwise)
Bits 31..8 = 0

22 Write Reset both Output and Resync FIFOs X
23 N/A Nothing is implemented here N/A
24 Write Tristate ABCD input signals Bit 0 is data, the input

signals are valid if 0,
tristated if 1.

25 Write Select hit pattern to decode the data for the
histogramming

Bits 2..0 (see Table 4)

26 Read Histogramming data decoding (error) flags Bits 2..0
27 Read Read the firmware version date. Bits 2..0 = Year

Bits 6..3 = Month
Bits 11..7 = Day

Table 4. Hit pattern selection.

Value Pattern Name
0 (default) 1XX or X1X or XX1 Hit mode
1 X1X Level mode
2 01X Edge mode
3 XXX Test mode
4 111 All hits
5 100 1st hit only
6 010 2nd hit only
7 001 3rd hit only



6

Communication with the Test System

All VME operations are done via programmable IO (no block transfers). That is,
we talk to the system by simply writing to and reading from VME addresses, one
at a time. These read/write commands get passed to FPGA on the VME board,
which is the "brain" of the system. The FPGA controls the data flow, does
histogramming, test vector comparison etc. The VME-board-centric view of the
data flow is shown in the figure below.

PCNIVXIVME
Crate

VME
Chipset

FPGAResync
FIFO

Output
FIFO

Connector
Board

PinDriver
Board

Probe
CardI/OI/O

I

O

VME board

Histo
Mem

TV
Mem

Sim
Mem



7

The FPGA firmware consists of several pieces (modules). The simplified
diagram of the FPGA partitioning is shown in the figure below. The arrows
indicate the major data flow directions. Control signals are not shown.

VME
interface
module

TV
module

ABCD
commands
module

Histogr.
module

Resync
FIFO
controller

Output
FIFO
controller

Frequency
module

DAC/ADC
module

Frequency
circuit

Histogramming
memory

TV
memory

SIM
memory

DACs and ADC

VME
chipset

Resync
FIFO

Output
FIFO



8

The major FPGA functional parts are the following.

VME interface

This module decodes the addresses of the VME read/write operations. It is used
as an interface to transfer the data and control signals to and from the other
modules.

This module has a Status Register, read from address 0x00, which contains the
following information:

• a fixed pattern 0xACE on the lowest bits
This is useful for testing the availability of the VME communication.

• busy bits for the histogramming, TV and DAC/ADC modules
These tell if a module is still performing the previous command and cannot
interpret a new one. Note that there are two such bits for the histogramming
module. One should OR these bits to decide if the module is still busy.

• the result of running a test vector
If a difference between the chip response and the expectation is found, then bit
17 is set to 1. The default is 0.



9

Frequency

Most parts on the VME board, including the FPGA, run at a fixed frequency of
40 MHz. However, the FIFOs can talk to the outside world at higher frequency.
In this case the rest of the hardware (pin driver and connector boards and probe
card) will be forced to operate at this high frequency. We use this functionality for
running test vectors only. The purpose of the high frequency operations is to
provide a non-destructive test of a radiation damage of the ABCD chip, as it was
noted that some parts of the chip slows down after receiving the radiation dose.

To obtain the high frequency, we use a phase-lock-loop (PLL) with 20 MHz clock
(40 MHz divided in half) as an input reference. The frequency module in the
FPGA transforms the input parameters needed to program PLL into a serial
bitstream and sends it out. The output frequency (in MHz) is

Fout = (Fin/8) * (M/N)

Here,
Fin is the 20 MHz input reference frequency,
M is the frequency multiplier (between 2 and 511),
N is the post divider (2, 4, 8 or 16).

There is a constraint: the value of internal frequency, (Fin/8) * M, must be
between 400 and 800 MHz. To satisfy this requirement the values in Table 5 are
recommended to program the PLL. Note that the values of N used in the formula
are used internally by the frequency synthesizer chip. To set those values, we
program the chip with the related values of N(load).

Table 5. Input parameters for frequency synthesis.

F, MHz N(formula) N(load) M F step, MHz
25 < F < 50 16 3 16*F*(8/20) 0.156
50 < F < 100 8 2 8*F*(8/20) 0.313

100 < F < 200 4 1 4*F*(8/20) 0.625



10

Histogramming

The purpose of this module is to provide the logic for on-board histogramming
of the data coming from a threshold scan. The module is able to interpret the
data format coming from the ABCD on the datalink/LED line, extract the numbers
of channels having hits from physics data packets, and increment the number of
hits for these channels in the histogramming memory on the VME board. It can
also clean up (write zeros to) the memory (write to 0x03) or read the number of
hits for a channel and pass this information to the VME module (read from 0x04).

The histogramming memory is treated as 256 blocks of 16x128 addresses. Here
16 is the max number of chips on a module that this system could potentially
work with, and 128 is the number of channels per chip. The Set Base Address
command (write to 0x05) sets the internal pointer to one of the 16x128 blocks.
This is the location where the module would store the data from a threshold scan.
When one reads the number of hits from the memory (read from 0x04), the
values for different channels are read out sequentially starting from address 0 in
this block.

The only way to erase the memory is via the Clean Memory command (write to
0x03), which cleans up all the memory. This takes a rather long time (13 ms),
which means that:
• one has to check for the BUSY flag to go down before issuing any other VME

command later on,
• it makes sense to issue this command only when all or nearly all of the 256

base addresses have been used up.

When working with the data, the module
1) extracts a channel number from the bitstream,
2) reads the number of hits for this channel from the histogramming memory,
3) increments the number of hits,
4) writes the new value back to the memory location.

The steps (2)-(4) take 6 clock cycles to complete. The channel extraction is
concurrent with the data stream, therefore it does not contribute here. This
number is smaller than the 17 bits describing an isolated hit data packet and
larger than the 4 bits describing a hit in the non-isolated hit data packet. To
prevent the data loss in the latter case, the extracted channel numbers are
passed through an internal 64-cell deep FILO.

Caution: the trig2trig delay, described in the next section, has to account for
this ≈64 clock cycles delay when reading out all channels from ABCD (the worst
case).



11

ABCD commands

The main purpose of this module is to compose and send out the bitstream
patterns used to communicate with the ABCD chip. It has the most relevance for
making the threshold scans. The commands are listed in Table 2.

For the purposes of the threshold scan, the module is made capable of issuing
multiple triggers ("burst"), interspersed with calibration strobe commands (shown
in the picture above). The user-tunable parameters are:

• the number of triggers sent,
The command is write to 0x11. The corresponding register has 16 bits.

• the spacing between the beginnings of two identical command sequences, in
clock cycles,
The command is write to 0x10. The corresponding register has 16 bits. Note
that this time includes the length of the commands bitstream.

trig2trig
delay, 0x10

HISTO_BUSY

1 2 3 N,
total number of
triggers sent
per burst, 0x11

..........

command
sequence

strobe2trig delay, 0x1f

calibration strobe
command trigger

command

trig2trig
delay, 0x10

trig2trig
delay, 0x10



12

• the delay between the beginning of the calibration strobe command and the
beginning of the trigger command, in clock cycles,
The command is write to 0x1f. The corresponding register has 8 bits. Note
that this time includes the length of the calibration strobe command.

• whether the calibration strobe command is present in the sequence.
The command is write to 0x1b. The calibration strobe command will be
present in the command sequence if the bit 0 is set to 1.



13

TV

This module is responsible for the test vector functionality in the system. It can
load the test vector content into a dedicated memory on the VME board, send
it out, receive the data from the chip, compare with the expected data, and
provide the result of the comparison (weather the bitstreams matched).

A Test Vector can be thought of as a sequence of numbers which define the
state of the control lines going to chip being tested on consecutive clock cycles.
The correspondence between the bits in a number and the control lines going to
the chip is given in Table 6. The bits 14 through 16 are not used; they remain
only for historical reasons.

The Simulation Vector defines the expected chip response to the corresponding
Test Vector. The data are presented on the lower 4 bytes, of which bits 5..0
define the response per se (Table 7) and bits 12..8 act as a mask for them:

Data = xxxM MMMM xxxD DDDD

where D's are data lines and M's are mask lines.

The bits are defined in Table 7. As an example, datalink/LED line is used in the
comparison if bit 8 is equal to one and not used otherwise.

The test and simulation vectors are usually stored as a sequence of numbers in
an ASCII file.

To load the test or simulation vector into corresponding memory on the VME
board, one can perform the following actions:
• reset TV/SIM memory (write to 0x01 or 0x02),
• sequentially write to TV/SIM memory the numbers comprising a vector (writes

to 0x07 or 0x08),
• write to memory the value of 0x20000, signifying the end of the vector for the

FPGA logic (writes to 0x07 or 0x08),
• reset TV/SIM memory (write to 0x01 or 0x02).

To exercise the test vector functionality, one needs to take the following
sequence of actions:
• load the test vector into TV memory on the VME board and simulation vector

into SIM memory,
• set the frequency and frequency-dependent delays,
• reset both the Output and Resync FIFOs (write to 0x22)
• send the TV to the ABCD chip via Send TV command (write to 0x06),
• wait until the TV finishes running (TV_BUSY flags in the FPGA SR clears)

and get the value of the difference in the same register. If a difference is
found then the TV failed.

The first two actions in this list can be swapped.



14

Table 6. Test Vector bits definition.

Bit Control Line
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

com0
com1
tokenin0
tokenin1
datain0
datain1
resetB
masterB
select
id0
id1
id2
id3
id4
power_on_rst
test_clk
test_rstB

Table 7. Simulation Vector bits definition.

Bit Control Line
0
1
2
3
4

datalink/LED
dataout0
dataout1
tokenout0
tokenout1

Since the TV/SIM vectors are resident on the VME board, one can run the same
TV multiple times without reloading it.

As mentioned before, to achieve high speed the TV module uses the VME board
FIFOs as fast buffers. The Send TV command triggers the following sequence of
actions on the VME board:
1) test vector is loaded in the output FIFO from the TV memory,
2) the FIFO is opened for reading and the TV starts to get sent out,
3) concurrently with (2) the Resync FIFO is opened for writing and it starts to

accept the incoming data from ABCD,
4) when the entire TV is sent out, the Resync FIFO is closed for writing,
5) TV comparison algorithm starts to read the Resync FIFO data looking for the

valid header sequence ("011101") in the datalink/LED line bitstream,
6) as soon as the header is found, the algorithm starts reading the data from the

SIM memory and comparing them with the Resync FIFO data (the TV
difference bit is asserted if the header has not been found by the end



15

of the FIFO data stream),
7) the data comparison is finished if either of these three events occur:

• a difference between the two data streams has been found,
• the Resync FIFO data stream is finished,
• the entire simulation vector have been read out from the SIM memory.

Caution: the simulation vector must start very close to the header (with
sequence of "011101..." on the datalink/LED line), since it is at that moment
when the vector would be read out from SIM memory.

The maximum TV size is about 256 K clock cycles.

The Table 8 contains the current list of test vectors, developed at CERN.

Table 8. Test Vectors description courtesy F. Anghinolfi. Also shown are
stimulated I/O lines. Each TV has the resetB input line de-asserted soon
after the beginning (not indicated in this Table).

TV # Stimulated
Input Lines

Affected
Output Lines

Purpose/Description

1 com0 datalink Configuration register Write/Read test.
Bits 0 thru 10 are scanned.

2 com0,
id0,
id1,
id2,
id3,
id4

datalink BC counter test (all 8 bits are
checked).
ID address bits test.
Overflow function and error code test.

3 com0 datalink Data Compression Logic tests with
random channel mask. Having "one"s
in different bits of the 3-bit hit
discription.

4 com0,
com1,
select

datalink Digital pipeline test.
Accumulate function test with
Com1/clock1 circuit.

5 com0,
tokenin0,
tokenin1,
datain0,
datain1

datalink,
tokenout0,
tokenout1,
dataout0,
dataout1

Data/tocken bypassing circuitry test.



16

DAC/ADC

The purpose of this module is to measure some signals using 8-channel, 12-bit
ADC placed on the connector board, and to set certain parameters using
many DACs in the system.

The ADC channels are listed in Table 9. The first two channels measure the
analog and digital voltages applied to the ABCD. The third channel measures
temperature on the connector board. It is provided as feedback about the
measurement environment. The main idea is to avoid damage to the electronics
in case if the cooling fan stops working. The next three channels measure
internal quantities of the ABCD via probe pads. The last two channels provide the
values of analog and digital currents consumed by the chip by measuring the
voltage across 5 Ω resistor placed in series with the ABCD.

The signals measured are amplified before the ADC. The Coeff column in the
table gives the number one should multiply the measured value by to get the
physical value, in mV. Sometimes the quantity of interest is current. In these
cases we also provide the resistance value one should divide the voltage by in
order to get the current.

Table 9. ADC channels. Quantity (Measurement*Coeff) gives the physical
value in mV.

ADC
Number

Abbreviation Coeff R, Ω Tcoeff,
mV/deg. C

Final quantitiy , Units

0
1
2
3
4
5
6
7

Vcc
Vdd
Temperature
Ipreamp
Ishaper
Vthreshold
Icc
Idd

1.5
1.5
0.5
0.1
0.1
0.5
0.2
0.2

250
1000

5
5

10

Meas*Coeff , mV
Meas*Coeff , mV
Meas*Coeff/Tcoeff, deg. C
Meas*Coeff/R , µA
Meas*Coeff/R , µA
Meas*Coeff , mV
Meas*Coeff/R , mA
Meas*Coeff/R , mA

The power consumption on the chip P = I V. When the current (either the digital
Idd or analog Icc) is measured, the power can be obtained by multiplying the
value by the voltage. Under usual running conditions, the analog voltage is Vcc =
3.5 V and the digital voltage Vdd = 4.0 V.

To measure a quantity with ADC, one has to
• issue a conversion for the corresponding ADC channel (write to 0xb),

this has to be done twice for the measurement to be precise;
• read the data from the conversion (0xc).



17

DACs are set by a VME write to address 0x0a.
Functionally, they set the following quantities in the system:
• the levels of the input signals to the ABCD, provided by pin drivers on the

connector board,
• the window comparators thresholds,
• the timing delays.

Window Comparators

The window comparators check the levels of the ABCD output. Each (differential)
output signal passes through a differential amplifier (and thus becomes single-
ended) before arriving to a comparator. The amplitude of the swing increases by
the factor of 3, due to the amplifier. The values of the resistors defining the
amplification factor, have the nominal accuracy of 1%. The "average" value for
each signal is defined by the reference voltage applied to the amplifier. For the
datalink/LED signal it is 0.29*Vdd, for data/tokenout signals these are 0.5*Vdd.
The uncertainty of the coefficients is also defined by the accuracy of the resistors
in the network.

Two comparators are provided for each signal. One of them has the positive
output iff the signal level is higher than its ("high") threshold. The output of the
other one is high iff the signal level is below its ("low") threshold. Inside the
FPGA, both the output of the first comparator and the negated output of the
second comparators are checked against the expectations when running the test
vectors. The signal will be valid iff both data streams match the expectations. The
picture below illustrates the scheme. For clarity, the signal distortion is greatly
exaggerated in this diagram.

The signal used in the comparison is inverted.

Window
Comparator O_hi

O_lo

V_th_hi

V_th_lo

X

X

Vref

Diff.
amplifier



18

V_th_hi

V_th_lo

Hi level comparator output, O_hi

Lo level comparator output, O_lo



19

A note on BUSY signals

The "Histogramming", "TV", "ABCD commands", "Frequency" and "DAC/ADC"
modules inside the FPGA are all independent from each other, with the caveat
that the first two use the same I/O lines. One can use DAC/ADC functionality
while doing other things. All modules have state machines, which start going
through a cycle after the corresponding signal from VME. The cycle is always
completed. If a second VME command addressing the same module happens
too soon, then it would be ignored. The minimal measured time between
consecutive VME bus accesses is 1.8 µs. This corresponds to 72 clock cycles
and is enough for most instructions to be completed. There are four notable
exceptions, which may take more time:
1) "start sending triggers and histogram the data" (0x0e),
2) "clear histogram memory" (0x03),
3) "send test vector" (0x06),
4) "send convert signal to ADC" (0x0b).

To provide feedback about the internal states after the four commands, the
BUSY signals were introduced. The user must wait for the corresponding BUSY
bit to clear after any of the four commands.



20

Datastream Decoding

The state machine (SM) for interpreting the data coming to the FPGA during a
threshold scan is shown below in a simplified form. The purpose of the algorithm
is to extract the channel numbers containing hits from the raw data packets (DP).
The SM can also recognize the configuration and error data format, although
they are not expected to appear during the scan. In case when the data do not
match the considered cases of
• physics DP,
• no hit DP,
• configuration DP or
• error DP
the SM goes into wait_for_trailer state, where it stays until the end of the data. It
should not go there in case of correct (unscrambled) data stream.

Since only physics DPs are expected during a scan, we provide a register (read
from 0x26), which has bits indicating if the SM has gone through
• wait_for_trailer state (bit 0), or has seen
• error DP (bit 1) or
• configuration DP (bit 2),
indicated by the gray boxes on the diagram. An asserted bit value is "1". The bits
are cleared (initialized to the default zeros) by the Send Triggers command. The
values are available for the readout after the histogramming process is done and
the corresponding BUSY bits are cleared in the FPGA status register.

adjacent_hit

wait_for_trailer

save_errorsave_config_datano_hitsave_first_hit

whats_up

wait_for_header



21

A Note on ID Lines

When running the test vectors, the ID lines are being controlled by the test vector
content, as indicated in Table 6.

When executing any of the commands in the Table 2 (for instance, when running
a threshold scan) all ID lines are set to zero. Therefore, the chip address value
has to be 32 ( = 0x20) for those commands. It is not zero due to the existence of
internal bit 5, which is pulled up to high value.



22

How to program a Scan

A sample sequence of actions issued for a threshold scan is listed below.

Important: Before you issue any command, check with the “read status register”
command (x00) that the busy flag is not set (bit 16)!

1) Initialize Module

• Set Frequency to 40 MHz (x0F)
• Set DACs for the power, pin drivers voltage and window comparators
• Load Mask Registers
• Load Trim DAC’s of all channels (x1E).
• Load Strobe Delay Register (x18)
• Load Bias DAC’s (x1D)
• Load the ABCD Configuration Register

2) Initialize Scan Parameters

• Clear Histogram Memory (x03)
• Set Number of Triggers per scan step (“burst”) (x11)
• Set Trigger to Trigger delay (x10). Make sure you allow enough readout time.
• Set Strobe to Trigger delay (x1F). This should be around 129.
• Enable Calibration Strobe.

3) Do the Scan

Loop over the following 5 commands ( i = [0..number of scan points-1] )
• Enable Data Taking
• Set the scan parameter (eg. threshold) to the i-th scan point (eg. x19)
• Set Base Address to the actual step number i (x05)
• Send burst of triggers (x0E)
• Wait while the Histogramming Module is busy

4) Read Histogram Memory

Loop over the following sequence for each scan point:
• Set base address to the value for this point (x05)
• Read from Histogram Memory (x04) the number of channels you want (128

times if all channels are enabled).



23

How the VME Interface Works

1) After startup of the FPGA, the mask registers and the compare registers of the
CY964’s are loaded. The mask registers are all set to 0, and the compare
registers are set to:

31..24 = board address (DIP switches)
24..0 = 0

This involves exercising the pins LDS and STROBE* during startup. MWB* is
always set to 1. LDS is later connected to the LDS pin of the 960. For the timing,
see p 4-8 of the databook. Writing to the compare reg. clears the mask reg. A 0
in the mask reg. means that the bit is used for comparison.

2) The 964’s respond by asserting VCOMP* if they’re hit by an address which
matches the compare register.

3) the VCOMP*’s go to the FPGA. The FPGA outputs SVIC_REGION(3 downto
0) are just the inverted VOMP*(3 downto 0).

4) Since we set the board address on bits 31..24 which corresponds to
vcomp*(3), only region “1000”=8 is enabled in the setup for the CY960.

There is a setup program, called WinSvic, which creates the bitstream for the
configuration PROM of the CY960, The Program is available on the CYPRESS
Website, and is installed on the PC in the office 50B-6220 in the folder
C:\hubert\new_DAQ\winswic.

The CY960 does 3 things:
a) It creates a programmable chip-select pattern cs(5..0) from the region(3..0)

inputs.
b) For each of the 16 possible region-codes, it can be told which types of VME

transfers are allowed.
c) Corresponding to the type of transfer, the data byte enable DBE(3:0) signals

are asserted. The DBE signals come later than the CS.

In case of a VME access to the board address set with the DIP switches, the
cs(0) will go high and then also some of the DBE, depending on the access. In
case of a 32 bit transfer, all DBE’s should go high.
I only check for a coincidence of at least one CS and at least one DBE for 2 clock
cycles, and then latch data, address and R_W into the FPGA. The 960 then waits
for LACK* to go low to acknowledge the data transfer. So in case of a write
access, the LACK* is immediately asserted; in case of a read access, it is
asserted when the valid data is on the bus.

At the moment, the 960 is configured in the following way:

i) Initialization: Serial PROM Method (on power up, it loads its config data
from PROM)

ii) Configuration=IO



24

iii) IO Menu:
Only for REGION=8 , the chip select cs(0) is activated. It’s set to active
HIGH.
The DBE assert time is set to 18 clock cycles. (It’s the minimum width in
case of self-timed access. Since we hand-shake the data transfer, it’s not
so important, but must certainly be long enough to be detected by the
FPGA).

a) AM Code Menu: Only for region 8: all access modes allowed, all other
regions: no access allowed
b) None of the special modes are allowed. (No lock etc).

Miscellaneous control:
a) decode delay: this is the time in clock cycles which the 960 waits upon receipt

of a AS* on the VME-bus (that’s the signal on the VME bus which tells the
960 that a valid address is available) before sampling the region inputs. We
set it to the maximum of 5 cc. (That’s 100 ns at 80 MHz..).

b) DBE Polarity. I don’t use the convention of the databook: I use DBE=active
HIGH.

c) AM Code LA bit off. See p 3-48
d) IRQ level=2. Irrelevant since we don’t use interrupts.

e) Bus holdoff=off, see p 3-51.

f) IACK LACK response = off. See p 3-62

g) Master interlave=off (only 961?) See online help in winsvic!

The configration file is called modules.sv



25

Table 10. FPGA pins related to the vme interface.

Signal name FPGA In/Out Active Description
laddr(31:1) in local address. Bits 31..24 match the

board address for a valid access.
ldata(31:0) in/out 32 bits of data. Bidirectional.
vme_xcvr_mwb_n out low tie high. Not actively used.
vme_xcvr_lds out high lds signal for the 964. Connected to

svic_lds during normal operation. During
startup, used to select mask/compare
register for loading those.

vme_xcvr_strobe_n out low used to load mask/compare reg on 964
during startup

board_addr(7:0) in board address, set by 8 DIP switches
svic_region(3:0) out high* Since only region 8 is enabled in the 960,

svic_region(3)=not vcomp(3).
svic_region(2 downto 0)=”000”

svic_lack_n out low used to acknowledge local data transfer.
Immediately asserted after write access,
asserted after valid data has been put on
ldata bus after a read access.

svic_lds in high must be tied to vme_xcvr_lds during
normal operation.

svic_lirq out low must be high always. Not used.
vcomp(3:0) input low result of address comparison in the

Cy964’s. Only vcomp(3) is used.
svic_dbe(3:0) in high* these bits go high during a valid vme

access corresponding to the type of vme
access (32 bit, 16 bit etc).

svic_cs(5:0) in high* only cs(0) is enabled. See description
above.

svic_lden_n in low not used.
svic_pren_n in low asserted during initialization. Not used.
svic_swden_n in low swap data enable. Not used.
svic_r_w* in -- write=low, read=high
svic_strobe in high only used if 960 configures 964 on power

up. Not used in this design.

••••    the polarity is programmable in the CY960 during configuration


